Theory	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results
00000	0000000	000	00	00	00000

Setup and Test of a Conversion Electron Spectrometer

Sandra Christen

Institut für KernPhysik, University of Cologne

13. Januar 2009

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory 00000	The Magnetic Spectrometer	Off-beam setup 000	In-beam setup 00	Results 00	Present setup and results
Con	tents				

- 2 The Magnetic Spectrometer
- 3 Off-beam setup
- 4 In-beam setup
- 5 Results

Sandra Christen

Setup and Test of a Conversion Electron Spectrometer

Institut für KernPhysik, University of Cologne

heory	The Magnetic Spectrometer
0000	000000

Off-beam setup

In-beam setup 00 Results 00 Present setup and results 00000

The Cologne Tandem-van de Graaf-generator

■ Ion beams up to Z=30 10 MV terminal, max. beam energy 120 MeV Beam currents from 10 to 100 nA, pulsed 2.5 ns at 2.5 MHz

Institut für KernPhysik, University of Cologne

Sandra Christen

Theory	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results
00000	0000000	000	00	00	00000
Transitions					
701	c ·				

The process of inner conversion

Electromagnetic transitions between excited nuclear states via either:

1 γ -Radiation or

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results
00000	0000000	000	00	00	00000
Transitions					
T	c :				

The process of inner conversion

Electromagnetic transitions between excited nuclear states via either:

- **1** γ -Radiation or
- 2 Inner Pair Production above 1.022 MeV or

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results
00000	0000000	000	00	00	00000
Transitions					

The process of inner conversion

Electromagnetic transitions between excited nuclear states via either:

- **1** γ -Radiation or
- 2 Inner Pair Production above 1.022 MeV or
- 3 Shell interaction: Inner Conversion.

Sandra Christen

Institut für KernPhysik, University of Cologne

 Theory
 The Magnetic Spectrometer
 Off-beam setup
 In-beam setup
 Results
 Present setup and results

 0000
 0000000
 000
 00
 00
 00
 000000

General transition probability

Why and Where is Conversion favoured?

$$\lambda(\sigma L) = \frac{P(\sigma L)}{\hbar \omega}$$

= $\frac{2(L+1)c}{\epsilon \hbar L[(2L+1)!!]^2} \left(\frac{\omega}{c}\right)^{2L+1} [m_{fi}(\sigma L)]^2$

with σ : Multipolarity (E or M) and L: Multipolorder.

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results				
00000	0000000	000	00	00	00000				
Conversion C	Conversion Coefficients								
Conversion coefficient α									

Definition

with $\lambda_{e_i^-}$: Transition probability for conversion electrons and $\alpha = \sum_i \alpha_i$ (i = K, L, M, ...)

Total Transition Probability $\lambda_t = \lambda_{\gamma} + \lambda_{e^-} = \lambda_{\gamma}(1 + \alpha)$ α is computed for all σ and L!

6/33

Theory	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results		
Conversion Coe	efficients						
Calculation of α :							

 $\psi_{i} = \psi_{i,N}\psi_{i,e^{-}}$ und $\psi_{f} = \psi_{f,N}\psi_{f,e^{-}}$

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory 000€0	The Magnetic Spectrometer	Off-beam setup 000	In-beam setup 00	Results 00	Present setup and results 00000			
Conversion Coefficients								
Calcul	Calculation of α :							

 $\psi_{i} = \psi_{i,N}\psi_{i,e^{-}}$ und $\psi_{f} = \psi_{f,N}\psi_{f,e^{-}}$

Conversion Coefficient: $\alpha(EL) \cong \frac{Z^3}{n^3} \left(\frac{L}{L+1}\right) \left(\frac{e^2}{4\pi\epsilon_0 \hbar c}\right)^4 \left(\frac{2m_e c^2}{E}\right)^{L+5/2}$

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory 000€0	The Magnetic Spectrometer	Off-beam setup 000	In-beam setup 00	Results 00	Present setup and results 00000			
Conversion Coefficients								
Calcul	Calculation of α :							

$$\psi_{i} = \psi_{i,N}\psi_{i,e^{-}}$$
 und $\psi_{f} = \psi_{f,N}\psi_{f,e^{-}}$

Conversion Coefficient: $\alpha(EL) \cong \frac{Z^3}{n^3} \left(\frac{L}{L+1}\right) \left(\frac{e^2}{4\pi\epsilon_0\hbar c}\right)^4 \left(\frac{2m_e c^2}{E}\right)^{L+5/2}$ $\alpha(ML) \cong \frac{Z^3}{n^3} \qquad \left(\frac{e^2}{4\pi\epsilon_0\hbar c}\right)^4 \left(\frac{2m_e c^2}{E}\right)^{L+3/2}$

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory 000€0	The Magnetic Spectrometer	Off-beam setup 000	In-beam setup 00	Results 00	Present setup and results 00000			
Conversion Coefficients								
Calcul	Calculation of α :							

$$\psi_{i} = \psi_{i,N}\psi_{i,e^{-}}$$
 und $\psi_{f} = \psi_{f,N}\psi_{f,e^{-}}$

Conversion Coefficient: $\alpha(EL) \cong \frac{Z^3}{n^3} \left(\frac{L}{L+1}\right) \left(\frac{e^2}{4\pi\epsilon_0\hbar c}\right)^4 \left(\frac{2m_e c^2}{E}\right)^{L+5/2}$ $\alpha(ML) \cong \frac{Z^3}{n^3} \qquad \left(\frac{e^2}{4\pi\epsilon_0\hbar c}\right)^4 \left(\frac{2m_e c^2}{E}\right)^{L+3/2}$

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory 000€0	The Magnetic Spectrometer	Off-beam setup 000	In-beam setup 00	Results 00	Present setup and results 00000			
Conversion Coefficients								
Calcul	Calculation of α :							

$$\psi_{i} = \psi_{i,N}\psi_{i,e^{-}}$$
 und $\psi_{f} = \psi_{f,N}\psi_{f,e^{-}}$

Conversion Coefficient: $\alpha(EL) \cong \frac{Z^3}{n^3} \left(\frac{L}{L+1}\right) \left(\frac{e^2}{4\pi\epsilon_0\hbar c}\right)^4 \left(\frac{2m_e c^2}{E}\right)^{L+5/2}$ $\alpha(ML) \cong \frac{Z^3}{n^3} \qquad \left(\frac{e^2}{4\pi\epsilon_0\hbar c}\right)^4 \left(\frac{2m_e c^2}{E}\right)^{L+3/2}$

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory 000€0	The Magnetic Spectrometer	Off-beam setup 000	In-beam setup 00	Results 00	Present setup and results 00000			
Conversion Coe	Conversion Coefficients							
Calculation of α :								

$$\psi_{i} = \psi_{i,N}\psi_{i,e^{-}}$$
 und $\psi_{f} = \psi_{f,N}\psi_{f,e^{-}}$

Conversion Coefficient: $\alpha(EL) \cong \frac{Z^3}{n^3} \left(\frac{L}{L+1}\right) \left(\frac{e^2}{4\pi\epsilon_0\hbar c}\right)^4 \left(\frac{2m_e c^2}{E}\right)^{L+5/2}$ $\alpha(ML) \cong \frac{Z^3}{n^3} \qquad \left(\frac{e^2}{4\pi\epsilon_0\hbar c}\right)^4 \left(\frac{2m_e c^2}{E}\right)^{L+3/2}$

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory 000€0	The Magnetic Spectrometer	Off-beam setup 000	In-beam setup 00	Results 00	Present setup and results 00000			
Conversion Coe	Conversion Coefficients							
Calculation of α :								

$$\psi_{i} = \psi_{i,N}\psi_{i,e^{-}}$$
 und $\psi_{f} = \psi_{f,N}\psi_{f,e^{-}}$

Conversion Coefficient: $\alpha(EL) \cong \frac{Z^3}{n^3} \left(\frac{L}{L+1}\right) \left(\frac{e^2}{4\pi\epsilon_0\hbar c}\right)^4 \left(\frac{2m_e c^2}{E}\right)^{L+5/2}$ $\alpha(ML) \cong \frac{Z^3}{n^3} \qquad \left(\frac{e^2}{4\pi\epsilon_0\hbar c}\right)^4 \left(\frac{2m_e c^2}{E}\right)^{L+3/2}$

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results
00000	000000	000	00	00	00000
Conversion Co					

Conversion-coefficient dependencies:

Value of α increases with 4 variables:

- Stronger for high L
- Stronger for high Z
- Stronger for low E (contrast to Ge-counters)
- Stronger for low n (generally, not always)

Strong α : conversion is favoured process, very important for low E!

The magnetic Spectrometer

The magnetic Spectrometer, beamline

Abbildung: Double Orange setup at beamline R30, total

The magnetic Spectrometer, before setup

The magnetic Spectrometer, during setup

The magnetic Spectrometer, opened

The magnetic Spectrometer, toroid coil

Schematically

- Target position
- Beamspot size on target
- Aperture width

Abbildung: Setup of big Orange at beamline R30

Looking inside: adjustments

Other cruxial parameters:

- Earth's magnetic field compensation
- Light leaks
- Scattered photons from bremsstrahlung

Abbildung: Coil segment

Theory 00000	The Magnetic Spectrometer	Off-beam setup 000	In-beam setup 00	Results 00	Present setup and results 00000			
Spectrometer '	Spectrometer 'Orange'							
General properties								

Electron in magnetic field

Electron in homogeneous magnetic field is forced into circular path.

 $F_{Lorentz} = evB$

Electron's mass generates centrifugal force.

$$F_{Centrifugal} = \frac{mv^2}{r}$$

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results
00000	000000	000	00	00	00000
Spectrometer '	Orange'				

Relative radius $\rho(\mathbf{r})$:

$$H_z = H_r = 0 ;$$

$$H_{\phi} = \frac{NI}{2\pi r} ;$$

$$F_{\text{Lorentz}} = F_{\text{Centrifugal}}(\rho(r))$$

$$\Leftrightarrow ev\mu_0 H = \frac{mv^2}{\rho(r)}$$

$$\Rightarrow \rho(r) = \frac{2\pi pr}{\mu_0 eNI}$$

 μ : Permeability, N: No of coils, e: Elementary charge, $2\pi r = l$: Length of toroidal coil,

 ρ : Relative radius, p: Electron momentum

$$\frac{\frac{\rho(r)}{r} = const.}{\Rightarrow p(I) = aI + b}$$

Sandra Christen

Setup and Test of a Conversion Electron Spectrometer

Abbildung: Coil segment with forces

Institut für KernPhysik, University of Cologne

Theory	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results		
00000	0000000	000	00	00	00000		
Setup design							
Design steps, initial phase							

1 Platform

- 2 Beam spot adjustment
- **3** Beamline: magnet, slits, beamdump
- 4 Cooling
- **5** Current generator tests
- 6 Cooling circuit stability observation
- 7 LabView control: automated stop at 42 $^{\circ}$

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results	
00000	0000000	000	00	00	00000	
Setup design						
Design steps, final phase						

- **1** Test measurements: singles, resolution, calibration
- 2 Delayed singles with pulsed beam \rightarrow lifetime estimation

Outlook

- Cold independent cooling circuit
- Double Orange: e^--e^- coincidences \rightarrow lifetimes, $\tau > 300$ ps, $\Delta \tau < 50$ ps
- $e^- \gamma$ coincidences (Ge- and LaBr₃(Ce)-scintillators), (LaBr₃(Ce): $\triangle E = 4\%$ and $\triangle t = 180$ ps)
 - \rightarrow lifetimes and coincident $\gamma\text{-ray}$ spectra \rightarrow level schemes

Theory 00000 The Magnetic Spectrometer

Off-beam setup 000 In-beam setup 00 Results 00 Present setup and results 00000

Setup design

Final setup, Stage 1 (Singles)

Sandra Christen

Institut für KernPhysik, University of Cologne

'Sliding-window' analysis: gates on e^- -detector spectra

¹⁹⁶Pt(p, 2n)¹⁹⁵Au
@ 14 MeV
Linear or potential gates on plastic scintillator

Abbildung: Off-beam: ${}^{133}\text{Ba} \rightarrow {}^{133}\text{Cs}$ source current spectrum

Institut für KernPhysik, University of Cologne

¹³³Ba source position adjustment

Theory	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results		
00000	000000	000	•0	00	00000		
Automatization In beam							

Singles automated setup scheme

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results
00000	000000	000	0●	00	00000
Target position					

In-beam target position adjustment

- Peak position not reproduced!
- Resolution can be reproduced
- Target angle influence: width and shift

Abbildung: Target position and angle: difference in peak position and resolution

Sandra Christen

Comparison of delayed singles, pulsed beam

- Wendel et al.:
 △E ≃
 1.25 % (120 keV)
 and
 1.1 % (360 keV)
 Christen et al.:
- $\triangle E \simeq$ 0.95 % (172 keV) and 1.61 % (306 keV)

Known and new states in ¹⁹⁵Au, pulsed beam

Abbildung: Analysis of ¹⁹⁵Au singles data

Theory	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results
00000	0000000	000	00	00	00000
a a Iifa	timor				

Lifetime measurement of 2_1^+ state in ¹⁶⁶Yb

Reaction: 164 Er(α ,2n) 166 Yb @ 28 MeV

Sandra Christen

Institut für KernPhysik, University of Cologne

Theor	The Magnetic Spectrometer	Off-beam setup	In-beam setup	Results	Present setup and results
0000	0000000	000	00	00	0000
0-00	Lifetimes				

Lifetime measurement of 2_1^+ state in ^{176}W

Reaction: ¹⁶⁹Tm(¹¹B,4n)¹⁷⁶W @ 53 MeV

New e[−]-e[−]-lifetime: τ = 1.434(30) ns

(Régis et al., Nucl. Instr. Meth. Phys.

Res. Section A (2008))

New e⁻- γ -lifetime: $\tau = 1.431(16)$ ns

(Régis et al., Nucl. Instr. Meth. Phys.

Res. Section A (2008))

△ τ = statistical
 + magnetical (15 ps)
 + peak pos. shift (10 ps)

Sandra Christen

(iii)

Institut für KernPhysik, University of Cologne

keV L-conversion electrons

Abbildung: γ -spectrum in coincidence with $2^+_1 \rightarrow 0^+_1$ (converted) transition (LaBr₃(Ce): $\Delta E = 4\%$ and $\Delta t = 180 \text{ ps}$)

Institut für KernPhysik, University of Cologne

Theory 00000	The Magnetic Spectrometer	Off-beam setup 000	
Facts			

In-beam setup 00 Results 00 Present setup and results 00000

Measured characteristics

Energy resolution: 0.7-2 %, 2 % $\tau > 300$ ps, $\Delta \tau < 50$ ps Max. Currents: 1000 A, 600 A E.-range: 1500 keV, 300 keV Transmission: 12-22 %, 16 % Automatisation!

*Régis et al., Nucl. Instr. Meth. Phys. Res. Section A, 2008, preprint

Sandra Christen

Institut für KernPhysik, University of Cologne

Theory 00000	The Magnetic Spectrometer	Off-beam setup 000	In-beam setup 00	Results 00	Present setup and result
Facts					

Credits

J. Jolie, N. Braun, G. Breuer, M. Dannhoff, A. Dewald, C. Fransen, C. Görgen, S. Heinze, G. Pascovici, Th. Materna, J.-M. Régis, O. Rudolph, L. Steinhard, S. Thiel, U. Werner, K. O. Zell.

Sandra Christen

Institut für KernPhysik, University of Cologne